Устройство и принцип работы телеграфной установки. История телеграфа в кратком изложении. Примитивные виды связи

Телеграфные аппараты сыграли большую роль в становлении современного общества. Медленная и ненадежная тормозила прогресс, и люди искали способы ее ускорения. С стало возможным создание аппаратов, моментально передающих важные данные на большие расстояния.

На заре истории

Телеграф в разных воплощениях - старейший из Еще в древние века возникла необходимость передавать информацию на расстоянии. Так, в Африке для передачи различных сообщений использовали барабаны тамтамы, в Европе - костер, а позже - семафорную связь. Первый семафорный телеграф сначала назвали «тахиграф» - «скорописец», но затем заменили его более соответствующим назначению названием «телеграф» - «дальнописец».

Первый аппарат

С открытием явления «электричество» и особенно после замечательных исследований датского ученого Ханса Кристиана Эрстеда (основоположника теории электромагнетизма) и итальянского ученого Алессандро Вольта - создателя первого и первой батарейки (ее называли тогда «вольтов столб») - появилось множество идей создания электромагнитного телеграфа.

Попытки изготовления электрических устройств, передающих некие сигналы на определенное расстояние, предпринимались с конца 18-го века. В 1774 году простейший телеграфный аппарат был построен в Швейцарии (г. Женева) ученым и изобретателем Лесажем. Он соединил два приемо-передающих устройства 24-мя изолированными проволоками. При подаче импульса с помощью электрической машины на одну из проволочек первого устройства на втором отклонялся бузиновый шарик соответствующего электроскопа. Затем технологию усовершенствовал исследователь Ломон (1787 год), заменивший 24 проволоки на одну. Однако данную систему сложно назвать телеграфом.

Телеграфные аппараты продолжали совершенствоваться. Например, французский физик Андре Мари Ампер создал передающее устройство, состоящее из 25 магнитных стрелок, подвешенных к осям, и 50-и проводов. Правда, громоздкость устройства сделала такой аппарат практически непригодным.

Аппарат Шиллинга

В российских (советских) учебниках указывается, что первый телеграфный аппарат, отличавшийся от своих предшественников эффективностью, простотой и надежностью, был сконструирован в России Павлом Львовичем Шиллингом в 1832 году. Естественно, некоторые страны оспаривают это утверждение, «продвигая» своих не менее талантливых ученых.

Труды П. Л. Шиллинга (многие из них, к сожалению, так и не были опубликованы) в области телеграфии содержат много интересных проектов электрических телеграфных аппаратов. Устройство барона Шиллинга был оснащен клавишами, которыми производилось переключение электрического тока в проводах, соединяющих передающий и приемный аппараты.

Первая в мире телеграмма, состоящая из 10 слов, была передана 21 октября 1832 с телеграфного аппарата, установленного на квартире Павла Львовича Шиллинга. Изобретатель разработал также проект прокладки кабеля для соединения телеграфных аппаратов по дну Финского залива между Петергофом и Кронштадтом.

Схема телеграфного аппарата

Приемный аппарат состоял из катушек, каждая из которых включалась в соединительные провода, и магнитных стрелок, подвешенных над катушками на нитях. На этих же нитях укреплялось по одному кружку, окрашенному с одной стороны в черный, а с другой в белый цвет. При нажатии клавиши передатчика магнитная стрелка над катушкой отклонялась и перемещала в соответствующее положение кружок. По комбинациям расположений кружков телеграфист на приеме по специальной азбуке (коду) определял переданный знак.

Сначала для связи требовалось восемь проводов, затем число их было сокращено до двух. Для работы такого телеграфного аппарата П. Л. Шиллинг разработал специальный код. Все последующие изобретатели в области телеграфии использовали принципы кодирования передачи.

Другие разработки

Почти одновременно телеграфные аппараты похожей конструкции, использовавшие индукцию токов, разрабатывались немецкими учеными Вебером и Гаусом. Уже в 1833 году они провели телеграфную линию в Геттингенском университете (Нижняя Саксония) между астронамической и магнитной обсерваториями.

Доподлинно известно, что аппарат Шиллинга послужил прототипом для телеграфа англичан Кука и Уинстона. Кук познакомился с трудами русского изобретателя в Гейдельбергском Вместе с соратником Уинстоном они усовершенствовали аппарат и запатентовали. Прибор пользовался большим коммерческим успехом в Европе.

Маленькую революцию в 1838 году произвел Штейнгейль. Мало того, что он провел первую телеграфную линию на большое расстояние (5 км), так еще случайно сделал открытие, что для передачи сигналов можно использовать всего один провод (роль второго выполняет заземление).

Впрочем, все перечисленные аппараты с циферблатными указателями и магнитными стрелками имели неисправимый недостаток - их невозможно было стабилизировать: при быстрой передаче информации возникали ошибки, и текст поступал искаженным. Закончить работы по созданию простой и надежной схемы телеграфной связи с двумя проводами удалось американскому художнику и изобретателю Самуэлю Морзе. Он разработал и применил телеграфный код, в котором каждая буква алфавита обозначалась определенными комбинациями точек и тире.

Устроен телеграфный аппарат Морзе очень просто. Для замыкания и прерывания тока используют ключ (манипулятор). Состоит он из рычага, выполненного из металла, ось которого сообщается с линейным проводом. Один конец рычага-манипулятора пружинкой прижимается к металлическому выступу, соединенному проводом с приемным устройством и с землей (используется заземление). Когда телеграфист нажимает на другой конец рычага, тот касается другого выступа, соединенного проводом с батареей. В этот момент ток устремляется по линии к приемному устройству, расположенному в другом месте.

На приемной станции на специальном барабане намотана узкая лента бумаги, непрерывно перемещаемая Под действием поступившего тока электромагнит притягивает к себе железный стержень, который протыкает бумагу, тем самым формируя последовательности знаков.

Изобретения академика Якоби

Российский ученый, академик Б. С. Якоби в период с 1839 по 1850 создал несколько типов телеграфных аппаратов: пишущие, стрелочные синхронно-синфазного действия и первый в мире буквопечатающий телеграфный аппарат. Последнее изобретение стало новой вехой в развитии систем связи. Согласитесь, гораздо удобнее сразу читать присланную телеграмму, чем тратить время на ее расшифровку.

Передающий буквопечатающий аппарат Якоби состоял из циферблата со стрелкой и контактного барабана. По внешнему кругу циферблата наносились буквы и цифры. Приемный аппарат имел циферблат со стрелкой, а кроме того, продвигающий и печатающий электромагниты и типовое колесо. На типовом колесе были выгравированы все буквы и цифры. При пуске в ход передающего устройства от импульсов тока, поступающих с линии, печатающий электромагнит приемного аппарата срабатывал, прижимал бумажную ленту к типовому колесу и отпечатывал на бумаге принятый знак.

Аппарат Юза

Американский изобретатель Дэвид Эдуард Юз утвердил в телеграфии способ синхронной работы, сконструировав в 1855 году буквопечатающий телеграфный аппарат с типовым колесом непрерывного вращения. Передатчик этого аппарата был клавиатурой типа рояля, с 28 белыми и черными клавишами, на которые были нанесены буквы и цифры.

В 1865 году аппараты Юза были установлены для организации телеграфной связи между Петербургом и Москвой, затем распространились по всей России. Данные устройства широко применялись вплоть до 30-х годов XX века.

Аппарат Бодо

Аппарат Юза не мог обеспечить высокой скорости телеграфирования и эффективного использования линии связи. Поэтому на смену этим аппаратам пришли многократные телеграфные аппараты, сконструированные в 1874 французским инженером Жоржем Эмилем Бодо.

Аппарат Бодо позволяет одновременно передавать нескольким телеграфистам по одной линии несколько телеграмм в обоих направлениях. Устройство содержит распределитель и несколько передающих и приемных устройств. Клавиатура передатчика состоит из пяти клавиш. Для повышения эффективности использования линии связи в аппарате Бодо применяется такое устройство передатчика, при котором передаваемая информация кодируется телеграфистом вручную.

Принцип действия

Передающее устройство (клавиатура) аппарата одной станции автоматически через линию подключается на короткие промежутки времени к соответствующим приемным устройствам. Очередность их соединения и точность совпадений моментов включения обеспечиваются распределителями. Темп работы телеграфиста должен совпадать с работой распределителей. Щетки распределителей передачи и приема должны вращаться синхронно и синфазно. В зависимости от числа передающих и приемных устройств, подключаемых к распределителю, производительность телеграфного аппарата Бодо колеблется в пределах 2500-5000 слов в час.

Первые аппараты Бодо были установлены на телеграфной связи «Петербург - Москва» в 1904 году. В дальнейшем эти аппараты получили широкое распространение в телеграфной сети СССР и использовались до 50-х годов.

Стартстопный аппарат

Стартстопный телеграфный аппарат ознаменовал новый этап развития телеграфной техники. Устройство имеет небольшие размеры, и оно более простое в эксплуатации. В нем впервые использовалась клавиатура типа пишущей машинки. Эти преимущества привели к тому, что к концу 50-х годов аппараты Бодо были полностью вытеснены из телеграфных пунктов.

Большой вклад в дело развития отечественных стартстопных аппаратов внесли А. Ф. Шорин и Л. И. Тремль, по разработкам которых отечественная промышленность в 1929 году начала выпускать новые телеграфные системы. С 1935 года начался выпуск устройств модели СТ-35, в 1960-х для них были разработаны автоматический передатчик (трансмиттер) и автоматический приемник (реперфоратор).

Кодировка

Поскольку устройства СТ-35 использовались для телеграфной связи параллельно с аппаратами Бодо, то для них был разработан специальный код №1, который отличался от общепринятого международного кода для стартстопных аппаратов (код №2).

После снятия с эксплуатации аппаратов Бодо отпала необходимость использовать в нашей стране нестандартный стартстопный код, и весь действующий парк СТ-35 был переведен на международный код №2. Сами аппараты, как модернизированные, так и новой конструкции, получили наименование СТ-2М и СТА-2М (с приставками автоматизации).

Рулонные аппараты

Дальнейшие разработки в СССР были натравлены на то, чтобы создать высокоэффективный рулонный телеграфный аппарат. Его особенность в том, что текст отпечатывается построчно на широком листе бумаги, наподобие матричного принтера. Высокая производительность и возможность передавать большие объемы информации были важны не столько для обычных граждан, сколько для объектов хозяйствования и государственных структур.

  • Рулонный телеграфный аппарат Т-63 оснащен тремя регистрами: латинским, русским и цифровым. С помощью перфоленты может автоматически принимать и передавать данные. Печать происходит на рулоне бумаги 210 мм шириной.
  • Автоматизированный рулонный электронный телеграфный аппарат РТА-80 позволяет как вести набор вручную, так и автоматически передавать и принимать корреспонденции.
  • Аппараты РТМ-51 и РТА-50-2 для регистрации сообщений используют красящую 13-миллиметровую ленту и рулонную бумагу стандартной ширины (215 мм). В минуту аппарат печатает до 430 знаков.

Новейшее время

Телеграфные аппараты, фото которых можно найти на страницах изданий и в музейных экспозициях, сыграли значительную роль в ускорении прогресса. Несмотря на бурное развитие телефонной связи, эти устройства не ушли в небытие, а эволюционировали в современные факсы и более совершенные электронные телеграфы.

Официально последний проводной телеграф, функционировавший в индийском штате Гоа, был закрыт 14 июля 2014 года. Несмотря на огромную востребованность (5000 телеграмм ежедневно), сервис был убыточным. В США последняя телеграфная компания Western Union перестала выполнять прямые функции в 2006 году, сосредоточившись на денежных переводах. Между тем, эпоха телеграфов не закончилась, а переместилась в электронную среду. Центральный телеграф России, хоть и значительно сократил штат, по-прежнему выполняет свои обязанности, так как не в каждую деревню на обширной территории есть возможность провести телефонную линию и интернет.

В новейший период телеграфная связь осуществлялась по каналам частотного телеграфирования, организованного преимущественно по кабельным и радиорелейным линиям связи. Основным преимуществом частотного телеграфирования явилось то, что оно позволяет в одном стандартном телефонном канале организовать от 17 до 44 телеграфных каналов. Кроме того, частотное телеграфирование дает возможность осуществить связь практически на любые расстояния. Сеть связи, составленная из каналов частотного телеграфирования, проста в обслуживании, а также обладает гибкостью, что позволяет создавать обходные направления при отказе линейных средств основного направления. Частотное телеграфирование оказалось настолько удобным, экономичным и надежным, что в настоящее время телеграфные каналы применяются все реже.

В 1872 году французский изобретатель Жан Бодо сконструировал телеграфный аппарат многократного действия, который имел возможность передавать по одному проводу два и более сообщения в одну сторону. Аппарат Бодо и созданные по его принципу получили название стартстопных. Кроме того, Бодо создал весьма удачный телеграфный код (Код Бодо), который впоследствии был воспринят повсеместно и получил наименование Международный телеграфный код № 1 (ITA1). Модифицированная версия МТК № 1 получила название МТК № 2 (ITA2). В СССР на основе ITA2 был разработан телеграфный код МТК-2. Дальнейшие модификации конструкции стартстопного телеграфного аппарата, предложенного Бодо, привели к созданию телепринтеров (телетайпов).В честь Бодо была названа единица скорости передачи информации - бод.

Телекс Siemens T100

К 1930 году была создана конструкция стартстопного телеграфного аппарата, оснащенного дисковым номеронабирателем телефонного типа (телетайп). Этот тип телеграфного аппарата в числе прочего позволял персонифицировать абонентов телеграфной сети и осуществлять быстрое их соединение. Практически одновременно, в Германии и Великобритании были созданы национальные сети абонентского телеграфа, получившие название Telex (TELEgraph + EXchange). Несколько позже в США также была создана национальная сеть абонентского телеграфирования, подобная Telex, которая получила наименование TWX (Telegraph Wide area eXchange). Сети международного абонентского телеграфирования постоянно расширялись и к 1970 году сеть Telex объединяла абонентов более чем 100 стран мира. Только в восьмидесятых годах благодаря появлению на рынке недорогих и практичных факсимильных машин сеть абонентского телеграфирования стала сдавать позиции в пользу факсимильной связи.

Телеграф в новом веке

В наши дни возможности обмена сообщениями по сети Telex сохранена во многом благодаря электронной почте. В России телеграфная связь существует и поныне, телеграфные сообщения передаются и принимаются при помощи специальных устройств - телеграфных модемов, сопряженных в узлах электрической связи с персональными компьютерами операторов. Тем не менее в некоторых странах национальные операторы сочли телеграф устаревшим видом связи и свернули все операции по отправлению и доставке телеграмм. В Нидерландах телеграфная связь прекратила работу в 2004 году. В январе 2006 года старейший американский национальный оператор Western Union объявил о полном прекращении обслуживания населения по отправке и доставлению телеграфных сообщений. В то же время в Канаде, Бельгии, Германии, Швеции, Японии некоторые компании все ещё поддерживают сервис по отправлению и доставке традиционных телеграфных сообщений.



Телеграфная связь имеет несколько разновидностей: собственно телеграфную связь, использующую для кодирования информации азбуку Морзе, телетайпную, дейтефонную и телекс (рис. 5).


Рис. 5. Разновидности телеграфной связи

Телетайпная связь

Телетайпная связь появилась позднее телеграфной, в конце XIX века, с изобретением буквопечатающих телеграфных аппаратов - телетайпов . Большинство телетайпных аппаратов имеют алфавитно-цифровую клавиатуру, печатающее устройство, перфоратор ленты и считыватель с перфоленты.

Ввод информации в телетайп может осуществляться с клавиатуры или с перфоленты. Перфорация ленты (нанесение на нее кодов в виде определенным образом расположенных отверстий) может осуществляться на самом телетайпном аппарате заранее, в автономном режиме. Поскольку ручной ввод информации с клавиатуры не обеспечивает высокой скорости передачи, реализуемой системой, предпочтительнее автоматизированный ввод. Телетайпная связь применяется до сих пор в учреждениях и на предприятиях. Но теперь передаваемая на телетайп информация может вводиться прямо из компьютера, оснащенного модемом. При передаче информация регистрируется как получателем, так и отправителем на бумажный носитель или на перфоленту.

Дейтефонная связь

При наличии аппаратуры согласования (модема ) в качестве канала связи для телетайпной аппаратуры может служить не только телеграфный, но и телефонный канал. Передачу документированной текстовой информации по телефонным каналам часто называют дейтефонной связью .

Телетайпы могут соединяться как непосредственно между собой, так и через коммутатор. Непосредственное соединение телетайпных аппаратов целесообразно для организации внутрифирменной связи. При передаче информации на значительные расстояния телеграфную аппаратуру включают в единую государственную систему абонентского телеграфирования. Этой сетью пользуются в основном министерства, промышленные предприятия, транспортные, финансовые учреждения и воинские части.

Телекс

Для передачи сообщений в другие страны используется международный телеграф - телекс. Эту сеть широко используют коммерческие учреждения, банки, биржи, страховые компании, информационные агентства, частные и государственные фирмы. Документы, переданные по этим сетям, обладают юридической силой, то есть признаются во всех странах.

Система «Телекс» имеет компьютерный вариант - Telex Net, предоставляющий пользователям дополнительные возможности. К ним относятся:

· работа в локальных вычислительных сетях;

· диалог;

· автоматическая передача данных с компьютера;

Существенным недостатком телеграфной связи является низкая достоверность передачи информации. Поэтому при передаче информации по телеграфным каналам связи принимаются специальные меры по повышению достоверности.

В частности, промышленность выпускает аппаратуру, оснащенную устройствами защиты от ошибок.

Сейчас все виды телеграфной связи постепенно вытесняются факсимильной связью .

Факсимильная связь

Предшественницей факсимильной связи была фототелеграфная связь. Она использовалась для передачи полутоновых изображений.

Назначение факсимильной связи - передача на расстояние информации в виде текстов, чертежей, рисунков, схем, фотоснимков и т. п. По существу, факсимильный способ передачи информации заключается в дистанционном копировании документов. Оперативность и простота в эксплуатации – неоспоримые преимущества факса.

В основу факсимильной связи положен метод передачи последовательности электрических сигналов, характеризующих яркость элементов передаваемого документа. Передаваемое изображение раскладывается на элементы. Процесс разложения документа на элементы называется разверткой, а просмотр и считывание этих элементов - сканированием.

Для организации факсимильной связи могут использоваться телефонные каналы, а также телеграфные и радиоканалы связи. Важное достоинство факсимильной связи - полная автоматизация передачи. Скорость и достоверность передачи информации довольно высоки.

Если компьютер снабжен факс-модемом, передаваемая информация может вводиться в память компьютера.

Выпускаемые в настоящее время факсимильные аппараты отличаются способом воспроизведения изображения, разрешающей способностью и другими параметрами.


В фотографических факсимильных аппаратах печать документа у принимающего абонента производится на фотографическую бумагу. Использование этих аппаратов обходится дороже, но они лучше других передают полутона и имеют высокую разрешающую способность (до 10 точек на мм 2).

Электромеханические

термографического термобумага. электрографические и струйные

лазерные

Передача документов по факсу производится в следующей последовательности:

Ø вставить подготовленный для передачи документ лицевой стороной вниз в приемный лоток факса;

Ø нажать команду SP-PHONE или просто поднять трубку;

Ø набрать номер факса абонента;

Ø после ответа абонента или, если факс абонента стоит в автоматическом режиме приема, услышав специфический сигнал-гудок, нажать кнопку START.

Ø Положить трубку, если вы использовали ее для переговоров.

Прием сообщений по факсу:

Ø Услышав сигнал, снять трубку;

Ø Нажать кнопку START;

Ø После получения сообщения подтвердить прием, положить трубку.

После передачи факсимильного сообщения многие факсы передают автоматический отчет-подтверждение о том, что сообщение передано и получено по назначению. Кроме того, всегда можно распечатать полный отчет о полученных и переданных сообщениях.

При передаче конфиденциальных документов по факсу на вашем и принимающем аппарате должны быть идентификационные коды для предотвращения несанкционированного доступа и получения секретной информации. Если коды передающего и принимающего аппаратов не совпадают, передача не состоится.

Выше описаны только самые простые функции телефаксов. Более сложные и дорогие факсы обеспечивают множество дополнительных функций таких как:

· Отложенная передача, которая позволяет, подготовив документ к передаче, отправить его в заданное время, например, ночью, когда тарифы на междугородные переговоры значительно ниже;

· Память на несколько десятков страниц, в которую принимаются факсы, если бумага вынута или закончилась, с последующей распечаткой, в эту же память можно загрузить документы для последующей их посылки в указанное вами время или рассылки нескольким адресатам;

· Отклонение ненужных вызовов – игнорирование вызовов, сделанных с телефонов, не содержащихся в памяти быстрого набора.

Например, аппараты фирмы XEROX или CANON с лазерным печатающим устройством, используют обычную бумагу, имеют все описанные выше возможности, а так же множество других. Память вмещает 35 страниц с возможностью расширения до 180. Лоток на 250 листов практически исключает возможность израсходования всей бумаги даже при большом объеме поступивших факсов. Кроме того можно заложить в память для отложенной рассылки до 20 различных документов, каждый со своим списком рассылки.

Если факс не работает или работает неустойчиво, в ряде случаев вы можете установить причину неполадок и, возможно, сами устраните возможные проблемы:

· Прежде всего проверьте, горит ли индикатор включения (POWER). Возможно, факс был случайно выключен или отключилось электричество (у некоторых моделей факсов даже при отключении от электросети будет раздаваться гудок);

· Проверьте состояние телефонной линии: попробуйте позвонить куда-нибудь. Если телефон не работает, то факс тоже не будет работать;

· Попросите абонента набрать номер вашего факса и после этого «стартуйте»;

· Проверьте, есть ли в телефаксе бумага. Когда она кончается, загорается индикатор NO PAPER (или PAPER OUT).

Электромеханические факсимильные аппараты часто называют штриховыми за то, что они не передают полутонов. Их отличает простота конструкции и использование обычной бумаги. Разрешающая способность этих аппаратов в пределах 4-6 точек на мм 2 .

Среди современных факсимильных аппаратов чаще всего встречаются аппараты термографического типа. Они недороги, но имеют достаточно хорошие характеристики (7-10 точек на мм 2 ,20-40 уровней серого). Для них используется специальная термобумага . Примерно к этому же классу относятся электрографические и струйные факсимильные аппараты. Их важная особенность - использование обычной бумаги.

Самые лучшие характеристики имеют лазерные факсимильные аппараты: до 15 точек на мм 2 , 64 уровней серого, но пока эти аппараты достаточно дороги.

Сервисные возможности современных факсимильных аппаратов:

· автоподача документов и бумаги;

· режим копирования документов;

· возможность подключения к компьютеру;

· запоминание телефонных номеров и текста документа, на случай отсутствия или неожиданного окончания бумаги;

· жидкокристаллический дисплей, отображающий режимы работы;

· режим «полинга» (приглашение нужной станции к передаче сообщения);

Чтобы расширить объем сервисных услуг, создаются факсимильные сервис-системы. Система общероссийского расширенного факс-сервиса охватывает все крупнейшие предприятия более чем в 500 городах России, стран СНГ и дальнего зарубежья. Эта система обеспечивает своим абонентам:

· доступ к системе с любого факс-аппарата или персонального компьютера для отправки документов;

· доставку документов немедленно или с задержкой;

· конфиденциальность передаваемой информации;

· выдачу квитанции с указанием результата выполнения команды абонента (доставлен документ или не доставлен) с указанием даты и времени, а также причины, по которой документ не был доставлен.

За рубежом факсимильные системы более развиты, чем у нас. В большинстве гостиниц, аэропортов, в фойе многих учреждений и других общественных местах установлены необслуживаемые кабины с факсимильными аппаратами. Они работают по тому же принципу, что и таксофоны.

Выпускаются телефонные факсимильные приставки, которые используются для передачи рукописных сообщений и выполняемых от руки схем, подписей. Такая приставка - это электронный блокнот, подключаемый к телефону. При передаче факса абонент специальным пером пишет или рисует на блокноте, текст или схема автоматически кодируются и посылаются принимающему абоненту. Важно, что таким образом передается и подпись ответственного лица.

Сотовая связь

Сотовая связь - один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть . Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками (сотами).

Сотовая связь Сетисотовойсвязи
Сотовая связь Сотовая связь

Примечательно, что в английском варианте связь называется «ячеистой» или «клеточной» (cellular), что не учитывает шестиугольности сот.

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

Первое использование подвижной телефонной радиосвязи в США относится к 1921 г.: полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приёмникам, установленным на автомашинах. В 1933 г. полиция Нью-Йорка начала использовать систему двусторонней подвижной телефонной радиосвязи также в диапазоне 2 МГц. В 1934 г. Федеральная комиссия связи США выделила для телефонной радиосвязи 4 канала в диапазоне 30…40 МГц, и в 1940 г. телефонной радиосвязью пользовались уже около 10 тысяч полицейских автомашин. Во всех этих системах использовалась амплитудная модуляция. Частотная модуляция начала применяться с 1940 г. и к 1946 г. полностью вытеснила амплитудную. Первый общественный подвижный радиотелефон появился в 1946 г. (Сент-Луис, США; фирма Bell Telephone Laboratories), в нём использовался диапазон 150 МГц. В 1955 г. начала работать 11-канальная система в диапазоне 150 МГц, а в 1956 г. - 12-канальная система в диапазоне 450 МГц. Обе эти системы были симплексными, и в них использовалась ручная коммутация. Автоматические дуплексные системы начали работать соответственно в 1964 г. (150 МГц) и в 1969 г. (450 МГц).

В СССР В 1957 г. московский инженер Л. И. Куприянович создал опытный образец носимого автоматического дуплексного мобильного радиотелефона ЛК-1 и базовую станцию к нему. Мобильный радиотелефон весил около трех килограммов и имел радиус действия 20-30 км. В 1958 году Куприянович создает усовершенствованные модели аппарата весом 0,5 кг и размером с папиросную коробку. В 60-х гг Христо Бочваров в Болгарии демонстрирует свой опытный образец карманного мобильного радиотелефона. На выставке «Интероргтехника-66» Болгария представляет комплект для организации местной мобильной связи из карманных мобильных телефонов РАТ-0,5 и АТРТ-0,5 и базовой станции РАТЦ-10, обеспечивающей подключение 10 абонентов.

В конце 50-х гг в СССР начинается разработка системы автомобильного радиотелефона «Алтай», введенная в опытную эксплуатацию в 1963 г. Система «Алтай» первоначально работала на частоте 150 МГц. В 1970 г. система «Алтай» работала в 30 городах СССР и для нее был выделен диапазон 330 МГц.

Аналогичным образом, с естественными отличиями и в меньших масштабах, развивалась ситуация и в других странах. Так, в Норвегии общественная телефонная радиосвязь использовалась в качестве морской мобильной связи с 1931 г.; в 1955 г. в стране было 27 береговых радиостанций. Наземная мобильная связь начала развиваться после второй мировой войны в виде частных сетей с ручной коммутацией. Таким образом, к 1970 г. подвижная телефонная радиосвязь, с одной стороны, уже получила достаточно широкое распространение, но с другой - явно не успевала за быстро растущими потребностями, при ограниченном числе каналов в жёстко определённых полосах частот. Выход был найден в виде системы сотовой связи, что позволило резко увеличить ёмкость за счёт повторного использования частот в системе с ячеистой структурой.

Конечно, как это обычно бывает в жизни, отдельные элементы системы сотовой связи существовали и раньше. В частности, некоторое подобие сотовой системы использовалось в 1949 г. в Детройте (США) диспетчерской службой такси - с повторным использованием частот в разных ячейках при ручном переключении каналов пользователями в оговоренных заранее местах. Однако архитектура той системы, которая сегодня известна как система сотовой связи, была изложена только в техническом докладе компании Bell System, представленном в Федеральную комиссию связи США в декабре 1971 г. И с этого времени начинается развитие собственно сотовой связи, которое стало поистине триумфальным с 1985 г., в последние десять с небольшим лет.

В 1974 г. Федеральная комиссия связи США приняла решение о выделении для сотовой связи полосы частот в 40 МГц в диапазоне 800 МГц; в 1986 г. к ней было добавлено ещё 10 МГц в том же диапазоне. В 1978 г. в Чикаго начались испытания первой опытной системы сотовой связи на 2 тыс. абонентов. Поэтому 1978 год можно считать годом начала практического применения сотовой связи. Первая автоматическая коммерческая система сотовой связи была введена в эксплуатацию также в Чикаго в октябре 1983 г. компанией American Telephone and Telegraph (AT&T). В Канаде сотовая связь используется с 1978 г., в Японии - с 1979 г., в Скандинавских странах (Дания, Норвегия, Швеция, Финляндия) - с 1981 г., в Испании и Англии - с 1982 г. По состоянию на июль 1997 г. сотовая связь работала более чем в 140 странах всех континентов, обслуживая более 150 млн абонентов.

Первой коммерчески успешной сотовой сетью была финская сеть Autoradiopuhelin (ARP). Это название переводится на русский как «Автомобильный радиотелефон». Запущенная в 1971 г., она достигла 100%-ного покрытия территории Финляндии в 1978. Размер соты был равен около 30 км, в 1986 г. в ней было более 30 тыс. абонентов. Работала она на частоте 150 МГц.

ТЕЛЕГРАФЫ ЭЛЕКТРИЧЕСКИЕ II. 1. Электрический звонок. 2 и 3. Двойной изолятор для проводов. 4. Изолятор в железной оправе. 5. Звонок для переменных токов. 6. Соединение проводов. 7. Реле. 8. Пишущий телеграфный прибор, обыкновенный немецкий. 9. Сифонный отметчик Томсона. 10. Поляризованный пишущий телеграфный аппарат Сименса и Гальске. 11. Приемный аппарат Морзе. 12. Ключ Морзе.

Примитивные виды связи [ | ]

С незапамятных времён человечество пользовалось различными примитивными видами сигнализации и связи в целях сверхбыстрой передачи важной информации в тех случаях, когда по ряду причин традиционные виды почтовых сообщений не могли быть использованы. Огни, зажигаемые на возвышенных участках местности, или же дым от костров должен был оповестить о приближении врагов либо о грядущем стихийном бедствии. Этот способ до сих пор используется заблудившимися в тайге или туристами, испытывающими стихийное бедствие . Некоторые племена и народы использовали для этих целей определённые комбинации звуковых сигналов от ударных (например говорящие и др. барабаны) и духовых (охотничий рог) музыкальных инструментов, другие научились передавать определённые сообщения, манипулируя отражённым солнечным светом при помощи системы зеркал. В последнем случае система связи получила наименование «гелиограф », который является примитивным световым телеграфом.

Оптический телеграф [ | ]

Передача ом Морзе при помощи корабельного оптического телеграфа (лампы Ратьера)

Семафоры могли передавать информацию с большей точностью, чем дымовые сигналы и маяки. Кроме того, они не потребляли топлива. Сообщения можно было передавать быстрее, чем их могли передавать гонцы, и семафоры могли обеспечивать передачу сообщений по целому региону. Но, тем не менее, как и прочие способы передачи сигналов на расстояние, они сильно зависели от погодных условий и требовали дневного света (Практичное электроосвещение появилось только в 1880 году). Они нуждались в операторах, и башни должны были быть расположены на расстоянии 30 километров друг от друга. Это было полезно для правительства, но слишком дорого для использования в коммерческих целях. Изобретение электрического телеграфа позволило снизить стоимость отправки сообщений в тридцать раз, кроме того, его можно было использовать в любое время суток, независимо от погоды.

Электрический телеграф [ | ]

Схема электромеханического телеграфа

Одна из первых попыток создать средство связи с использованием электричества относится ко второй половине XVIII века, когда Ж.-Л. Лесаж в 1774 году построил в Женеве электростатический телеграф. В 1798 году испанский изобретатель Франциско де Сальва (d ) создал собственную конструкцию электростатического телеграфа. Позднее, в 1809 году немецкий учёный Самуил Томас Земмеринг построил и испытал электрохимический телеграф на пузырьках газа .

Основные телеграфные линии на 1891 год

Фототелеграф [ | ]

В 1843 году шотландский физик Александр Бейн продемонстрировал и запатентовал собственную конструкцию электрического телеграфа, которая позволяла передавать изображения по проводам. Аппарат Бейна считается первой примитивной факс -машиной.

В 1855 году итальянский изобретатель Джованни Казелли создал аналогичное устройство, которое назвал Пантелеграф и предложил его для коммерческого использования. Аппараты Казелли некоторое время использовались для передачи изображений посредством электрических сигналов на телеграфных линиях как во Франции, так и в России.

Аппарат Казелли передавал изображение текста, чертежа или рисунка, нарисованного на свинцовой фольге специальным изолирующим лаком. Контактный штифт скользил по этой совокупности перемежающихся участков с большой и малой электропроводностью, «считывая» элементы изображения. Передаваемый электрический сигнал записывался на приёмной стороне электрохимическим способом на увлажнённой бумаге, пропитанной раствором железосинеродистого калия (феррицианида калия). Аппараты Казелли использовались на линиях связи Москва-Петербург (1866-1868), Париж-Марсель и Париж-Лион .

Самые же совершенные из фототелеграфных аппаратов производили считывание изображения построчно фотоэлементом и световым пятном, которое обегало всю площадь оригинала. Световой поток, в зависимости от отражающей способности участка оригинала, воздействовал на фотоэлемент и преобразовывался им в электрический сигнал. По линии связи этот сигнал передавался на приёмный аппарат, в котором модулировался по интенсивности световой луч, синхронно и синфазно обегающий поверхность листа фотобумаги. После проявления фотобумаги на ней получалось изображение, являющееся копией передаваемого - фототелеграмма . Технология нашла широкое применение в новостной фотожурналистике . В 1935 году агентство «Ассошиэйтед Пресс » первым создало сеть корпунктов, оснащённых фототелеграфными аппаратами, способными передавать снимки на большие расстояния непосредственно с места событий . Советская «Фотохроника ТАСС » оснастила корпункты фототелеграфом в 1957 году, и переданные в центральный офис таким способом снимки подписывались «Телефото ТАСС» . Технология господствовала в доставке изображений вплоть до середины 1980-х годов, когда появились первые фильм-сканеры и видеофотоаппараты , а за ними - цифровая фототехника.

Беспроводной телеграф [ | ]

7 мая 1895 года российский учёный Александр Степанович Попов на заседании Русского Физико-Химического Общества продемонстрировал прибор, названный им «грозоотметчик », который был предназначен для регистрации радиоволн, генерируемых грозовым фронтом. Этот прибор считается первым в мире радиоприёмным устройством, пригодным для реализации беспроводного телеграфа. В 1897 году при помощи аппаратов беспроводной телеграфии Попов осуществил приём и передачу сообщений между берегом и военным судном. В 1899 году Попов сконструировал улучшенный вариант приёмника электромагнитных волн, где приём сигналов - ом Морзе - осуществлялся на наушники оператора - радиста. В 1900 году благодаря радиостанциям, построенным на острове Гогланд и на российской военно-морской базе в Котке под руководством Попова, были успешно осуществлены аварийно-спасательные работы на борту военного корабля «Генерал-адмирал Апраксин», севшего на мель у острова Гогланд. В результате обмена радиотелеграфными сообщениями экипажу российского ледокола «Ермак» была своевременно и точно передана информация о финских рыбаках, находящихся на оторвавшейся льдине в Финском заливе.

За рубежом техническая мысль в области беспроводной телеграфии также не стояла на месте. В 1896 году в Великобритании итальянец Гульельмо Маркони подал патент «об улучшениях, произведённых в аппарате беспроводной телеграфии». Аппарат, представленный Маркони, в общих чертах повторял конструкцию Попова, многократно к тому времени описанную в европейских научно-популярных журналах. В 1901 году Маркони добился устойчивой передачи сигнала беспроводного телеграфа (буквы S) через Атлантику .

Аппарат Бодо: новый этап развития телеграфии [ | ]

В 1872 году французский изобретатель Жан Бодо сконструировал телеграфный аппарат многократного действия, который имел возможность передавать по одному проводу два и более сообщения в одну сторону. Аппарат Бодо и созданные по его принципу получили название стартстопных. Кроме того, Бодо создал весьма удачный телеграфный ( Бодо), который впоследствии был воспринят повсеместно и получил наименование Международный телеграфный № 1 (ITA1). Модифицированная версия МТК № 1 получила название МТК № 2 (ITA2). В СССР на основе ITA2 был разработан телеграфный МТК-2 . Дальнейшие модификации конструкции стартстопного телеграфного аппарата, предложенного Бодо, привели к созданию телепринтеров (телетайпов). В честь Бодо была названа единица скорости передачи информации - бод .

Телекс [ | ]

Телекс Siemens T100

К 1930 году была создана конструкция стартстопного телеграфного аппарата, оснащённого дисковым номеронабирателем телефонного типа (телетайп). Этот тип телеграфного аппарата, в числе прочего, позволял персонифицировать абонентов телеграфной сети и осуществлять быстрое их соединение. Практически одновременно в Германии и Великобритании были созданы национальные сети абонентского телеграфа, получившие название Telex (TELEgraph + EXchange).

На основании международных соглашений 1930-х годов телекс-сообщение было признано документом, а телекс, соответственно, видом документальной связи.

В Казахстане услуги телеграфной связи физическим лицам не предоставляются с 1 января 2018 года. Для юридических лиц тарифы были изменены с 1 июля 2018 года, сейчас одно слово телеграммы стоит 675 тенге (1,8 USD). Рентабельность предоставления данной услуги оператором АО «Казактелеком» составила минус 92 процентов, что не подразумевает её дальнейшего развития .

В то же время, в Канаде, Германии, Швеции, Японии некоторые компании всё ещё предоставляют услуги по отправке и доставке традиционных телеграфных сообщений.

Влияние на общество [ | ]

Телеграфия способствовала росту организованности «на железных дорогах, объединила финансовые и товарные рынки, уменьшила стоимость [передачи] информации внутри и между предприятиями» . Рост делового сектора подстегнул общество к дальнейшему расширению использования телеграфа.

Внедрение телеграфии в мировом масштабе изменило подход к сбору информации для новостных репортажей. Сообщения и информация теперь распространялись далеко и широко и телеграф потребовал введения языка «свободного от локальных региональных и нелитературных аспектов», что привело к развитию и стандартизации мирового медиа-языка .

См. также [ | ]

Примечания [ | ]

  1. Каким был первый телеграф
  2. Скан патента (неопр.) .
  3. Фототелеграф - статья из Большой советской энциклопедии .
  4. Л.Я.Крауш. Фототелеграмма // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис . - М. : Советская энциклопедия , 1981. - 447 с.
  5. Michael Zhang.

БУКВОПЕЧАТАЮЩИЕ ТЕЛЕГРАФНЫЕ АППАРАТЫ позволяют воспроизводить на бумажной ленте знаки не в виде азбуки Морзе (комбинация тире и точек), а обыкновенным типографским шрифтом, и притом со значительными, по сравнению с аппаратом Морзе, скоростями, все более и более возрастающими по мере усовершенствования (эти аппараты называются также быстродействующими телеграфными аппаратами). Буквопечатающие телеграфные аппараты по конструкции и способу действия весьма разнообразны. По способу передачи их можно разделить на два основных типа: а) с ручной (клавиатурной) передачей и б) с автоматической передачей - посредством предварительно перфорированной ленты. Наиболее употребительные в современной телеграфии аппараты называются большей частью по фамилиям их изобретателей. Ниже приводится краткое описание буквопечатающих телеграфных аппаратов, получивших распространение в СССР.

1) (фиг. 1).

В основу положен следующий принцип. В передающем и приемном аппаратах имеются типовые колеса, по ободу которых выгравированы буквы, цифры, знаки препинания. Типовые колеса приводятся во вращение часовым механизмом с равномерной скоростью, причем на передающем и приемном аппаратах одинаковые знаки находятся одновременно в нижнем положении. Синхронизм вращения поддерживается регулятором скорости R и специальным коррекционным устройством. Передающий механизм состоит из клавиатуры, коробки с болтиками и тележки с контактным приспособлением. Клавиатура имеет 28 клавишей - 14 белых и 14 черных, из которых на 26 изображены буквы и цифры; две свободные клавиши служат для перехода с букв на цифры (цифровой и буквенные бланки) и для получения интервалов между словами. Под клавишами находятся 28 рычагов hh 1 (фиг. 2), расположенных своими концами h 1 в коробке А по кругу.

На концы рычагов h 1 упираются болтики s, числом также 28; верхние концы болтиков проходят в отверстия крышки В и в спокойном положении находятся на ее уровне. В центре крышки расположен подшипник, в котором вращается приводимая в движение часовым механизмом ось тележки. Тележка состоит из вилки С, между концами которой расположен двуплечий рычаг G. Одно плечо его прикреплено к стальной муфте D, свободно надетой на ось, а другой имеет на конце стальную губу l, проходящую над серединой болтиков. Кроме того, к стальной муфте прикреплен рычаг К с контактным пером F, находящимся между двумя контактными винтами. В момент нажатия клавиши вращающаяся тележка наскакивает своей губой на головку болтика, выдвинутого рычагом соответствующей клавиши; вследствие этого муфта D опускается и тянет книзу правое плечо рычага К; левое его плечо своим пером соединяет батарею Е с линией L через верхний контакт (фиг. З).

(В момент покоя контактное перо F соединяет линию с электромагнитами приемного устройства аппарата.) Для восприятия переданного сигнала служат система электромагнитов, печатающие приспособления и приспособления для протягивания ленты. При прохождении тока через обмотки поляризованного электромагнита 1 (фиг. 4) якорь 2 отскакивает от полюсных надставок и с силой ударяет по ударному винту 3 спускового рычага 4.

Спусковой рычаг действует на храповое сцепление 5, которое приводит в движение печатающую ось 6. Эта последняя посредством улиткообразного эксцентрика 7 и рычага 8 прижимает ленту к типовому колесу 9. Часовой механизм аппарата Юза приводится в движение гирей или мотором.

2) (изобретен в Англии в 1867 г.) м. б. назван автоматическим Морзе, т. к. передаваемые и получаемые им буквы представляют сочетание точек и тире азбуки Морзе. Аппарат Уитстона состоит из следующих составных частей: а) перфоратора, для предварительного набора на ленту передаваемых телеграмм; б) трансмиттера, или передатчика, для посылки сигналов автоматическим путем посредством пропускания через него заготовленной заранее на перфораторе ленты, и в) ресивера, или приемника, для записи получаемых сигналов.

а) Перфоратор представлен на фиг. 5 с открытой передней крышкой. Впереди видны три кнопки, которые соединены рычагами с механизмом перфоратора, находящимся в задней части ящика.

Набор букв на ленту производится по азбуке Морзе, причем точки и тире изображаются комбинациями отверстий, пробиваемых на ленте особыми штифтами, или пуансонами (1, 2, 3, 4, 5), перфоратора. Для этой цели ударяют по кнопкам небольшими деревянными колотушками с каучуковыми наконечниками. При ударе по левой кнопке, соответствующей точке, на ленте пробиваются сразу три отверстия: верхнее и нижнее большие - для посылки токов двух направлений, и среднее малое - для передвижения ленты зубчатым колесом передатчика. При ударе по правой кнопке пробиваются сразу четыре отверстия: два больших наискось и два малых посредине. Средняя кнопка соответствует интервалу, и при ударе по ней пробивается одно отверстие среднего ряда. На фиг. 5 изображена лента с такого рода отверстиями: левый конец ее - с отдельно пробитыми комбинациями отверстий для точки и тире, а дальше вправо - с отверстиями для слова «Москва». Скорость набора телеграмм на ленту всецело зависит от искусства работника и максимально доходит до 200 букв в минуту.

б) Трансмиттер . На фиг. 6 показана схема трансмиттера Уитстона. Эбонитовое коромысло К, получая качательное движение от часового механизма, сообщает его токовращателю Т при помощи металлических штифтов 9 и 10 и рычагов 11 и 12, на длинных коленах которых прикреплены стальные иглы 13 и 14, прижатые для устойчивости пружинками 15 и 16 к винтам 17 и 18.

Короткие колена рычагов 11 и 12 имеют: правый - короткую 19, а левый - длинную 20 штанги, назначение которых - следовать под действием спиральной пружины 24 всем движениям коромысла и толкать токовращатель вправо и влево. Маленький каток 6 под действием пружины 7 давит на верхний конец токовращателя, скошенный на два ската, и завершает действие штанг 19 и 20, содействуя быстрым поворотам токовращателя и плотному контакту между его нижним концом и батарейными винтами Х 1 и X 2 . Перфорированная лента W движется над иглами т. о., что верхние концы их при поднятии входят в отверстия, каждая в свой крайний ряд, или задерживаются, если отверстий не встречают.

Передача точки . Правое плечо коромысла К поднимается кверху, за ним следует, под влиянием пружины 24, рычаг 12; задняя игла 13, поднимаясь, встречает в ленте отверстие, отчего штанга 19 переместит токовращатель вправо, нижний конец его коснется плюсового батарейного винта, и в линию начнется посылка плюса через ось токовращателя, все время соединенную с линией. Плюс на приемнике производит печатание. При следующем качании коромысла его левое плечо поднимается, с ним поднимается рычаг 11 с иглой 14, которая входит в отверстие нижнего ряда ленты, отчего штанга 20 переместит токовращатель к минусовому батарейному винту, и поэтому в линию будет посылаться минус, производящий на приемнике пробел.

Передача тире . Тире начинается, так же, как и точка, поднятием правого плеча коромысла, рычага 12 и иглы 13, и токовращатель посылает на линию плюс. При следующем качании коромысла поднимается его левое плечо, а вместе с ним рычаг 11 и игла 14, но последняя, не встретив на ленте отверстия, задержится; ее рычаг 11 также остановится, отделившись от штифта коромысла, и штанга 20 более не будет двигаться вправо, ее муфта не дойдет до нижнего конца токовращателя, и последний останется в положении, приданном ему первым качанием коромысла, т. е. посылка на линию плюса не прервется. При третьем качании будут явления первого качания, следовательно, в линию будет посылаться плюс непрерывно в течение трех качаний. Наконец, при четвертом качании коромысла игла 14, поднимаясь, уже встречает отверстие в нижнем ряду ленты, токовращатель перемещается, и в линию посылается минус. Если за этим между буквами или словами следует интервал, то иглы, попеременно поднимаясь, будут встречать только поверхность ленты, а, следовательно, токовращатель, оставаясь все время у минусового батарейного винта, будет посылать в линию минус, оставляющий на этом месте ленты приемника пробел.

Новейшие Уитстоновские передатчики могут давать скорость, соответствующую 10-236 точкам в сек.

в) Ресивер . Особенностью приемника аппарата Уитстона является реле Присса, у которого под действием сильного постоянного подковообразного магнита остаются поляризованными как оба конца сердечников их катушек, так и соответствующие им якоря. Благодаря этому приемник отличается весьма высокой чувствительностью и способностью к быстрой записи сигналов (приемник начинает действовать уже при силе тока в 1 mА). Если, например, ток положительного направления, пройдя через обмотки обеих катушек (фиг. 7), вызвал в верхних полюсных надставках S 1 и S 2: в левой - северная полярность и в правой - южную, а в нижних - наоборот, то левые надставки (нижняя и верхняя) будут размагничены, а правые сильнее намагничены, вследствие чего якоря n притянутся к правым надставкам.

По прекращении тока якоря останутся там же. При прохождении тока другого направления якоря притянутся к левым надставкам, и в этом случае на ленте происходит печатание получаемых сигналов знаками азбуки Морзе. Для этой цели на продолжении оси Н (фиг. 8) имеется изогнутая рукоятка I со стерженьком, который оканчивается печатающим колесиком m 1 .

Одновременно с поворотом колесика, действием часового механизма ресивера, диск m, погруженный в резервуар с краской, вращается в обратную сторону и смачивает краской колесико m 1 . Дальнейшим усовершенствованием аппарата Уитстона является буквопечатающий телеграфный аппарат Крида , у которого передающее устройство такое же, как и у Уитстона, приемное же изменено так, что позволяет получать телеграмму, напечатанную обыкновенным типографским шрифтом.

3) Буквопечатающий телеграфный аппарат Бодо изобретен французским телеграфным техником Жаном Бодо в 1874 г. Первый аппарат Бодо в СССР был установлен в 1904 г. между Ленинградом и Москвой. В настоящее время (1927 г.) на проводах СССР находится в действии свыше 200 комплектов буквопечатающих телеграфных аппаратов Бодо разных типов, отрабатывающих до 60% всей телеграфной корреспонденции. Главные составные части аппарата Бодо следующие: манипулятор, распределитель тока, приемный аппарат. Азбука Бодо - пятизначная и состоит из посылок в провод для каждой буквы, цифры или знака препинания пяти токов равной продолжительности, комбинируемых из двух полярностей: минуса (ток работы) и плюса (ток покоя). Например, буква А или цифра 1 выражается комбинацией -++++, буква Т (или Э) -+-+- и т. д. Когда желают послать к приемнику букву, предварительно посылают комбинацию ++++-, устанавливающую печатающий механизм приемного аппарата в такое положение, при котором печатаются буквы. Перед печатанием цифр посылают +++-+. Посылка комбинаций производится посредством клавиатуры манипулятора (фиг. 9, А), которая имеет 5 клавиш, разделенных выступом D на две группы 1, 2, 3 и 5, 4.

Клавиши имеют общую ось вращения 1 (фиг. 9, Б). Каждая клавиша в спокойном положении посылает на линию плюс от батареи Е 1 , у которой минус заземлен, а плюс подведен к задней контактной шине 4 клавиатуры. При нажатии клавиши ее контактная пружинка 3 переходит к передней шине 2, соединенной с минусом другой батареи Е 2 такого же напряжения, как и Е 1 , но с заземленным плюсом. Контактная пружина соединяется распределителем с линией. Нажатая комбинация клавиш автоматически задерживается в этом положении крючком 5 в течение целого оборота щеток распределителя и отпускается посредством тактового электромагнита Т, который поворачивает своим якорем 6 плоскую пружину 7, а с ней и ось 8 всех пяти блокирующих крючков. Одновременно с этим якорь 6, ударяясь о стержень 9, дает сигнал телеграфисту, который только после этого набирает следующую комбинацию. Назначение распределителя состоит в том, чтобы один и тот же провод по очереди предоставлять нескольким передатчикам и приемникам на одной оконечной станции. На другой оконечной станции имеется точно такой же распределитель. Оба распределителя вращаются синхронно. Распределители, смотря по системе, бывают: 2-, 4-, 6- и 8-кратные.

На фиг. 10 представлен диск двукратного распределителя. Он состоит из ряда контактных колец, по которым скользят контактные щетки а , прикрепленные к вращающемуся щеткодержателю.

Каждая пара щеток касается одновременно двух колец распределителя: одна пара - колец Iи IV, вторая - II и V и третья - III и VI. Щеткодержатель получает вращение от специального часового механизма с гирей. Для постоянства числа оборотов на оси посажен чувствительный регулятор скорости. В самом механизме имеется коррекционное приспособление и коррекционный электромагнит, поддерживающие синхронизм вращения двух оконечных распределителей. На фиг. 11 представлена схема двукратного аппарата Бодо с развернутыми кольцами распределителя.

I кольцо диска имеет 11 контактов, из которых 1-5 соединены с приемником Р 1 , 6-10 - с приемником Р 2 , а в 11 контакт включен коррекционный электромагнит К. II кольцо диска имеет 14 контактов: в 1-5 контакты включены клавиши манипулятора М 1 , а в 6-10 - клавиши манипулятора М 2 . III кольцо также имеет 14 контактов, из которых 3 и 12 соединены с тактовыми электромагнитами Т 1 и Т 2 манипуляторов М 1 и М 2 , а 1, 2 и 6, 7 с тормозными электромагнитами приемников Р 1 и Р 2 ; IV, V и VI кольца - сплошные. Передача и прием происходят т. о., что если с 6-10 контактов II кольца при пробегании по ним щеток V-II происходит передача от манипулятора М 2 комбинации (через щетки и V кольцо) в провод L, то на 1-5 контакты того же кольца происходит прием входящих посылок тока. Входящий линейный ток через V кольцо, щетки, II кольцо, заднюю шину манипулятора М 1 поступает в поляризованное реле R, которое замыкает местную батарею Е 3 на цепь: IV кольцо, щетки, I кольцо и электромагниты приемника, производя печатание соответствующего знака.

Приемник аппарата Бодо имеет 5 электромагнитов М (фиг. 12), якоря которых в момент прохождения токов нажимают на направляющие рычаги 11, находящиеся на общей оси.

Поворачиваясь, эти рычаги продвигают разведчики 12 с диска 13 (покоя) на диск 14 (рабочий). Оба диска снабжены по окружности треугольными вырезами, расположение которых соответствует комбинациям азбуки Бодо. На той же оси закреплено типовое колесо 15 с буквами и цифрами. Пять разведчиков, встречая на своем пути углубления вышеуказанных дисков, соответствующих посланной комбинации, попадают в них своими ножками и поворачиваются на некоторый угол, вследствие чего педаль Р (фиг. 13) поднимается и при обратном выталкивании разведчиков из углублений с силой ударяет по зацепному крючку 17, отпускающему печатный рычаг 18 с лентой, которая и получает от типового колеса требуемый знак.

После печатания лента автоматически протягивается на один знак. Приемник приводится в действие гирей и имеет регулятор скорости. Аппараты Бодо 4-кратные, 6-кратные и т. д. отличаются только в устройстве дисков распределителей. Весьма важными добавочными приборами к аппарату Бодо являются ретрансмиттеры, позволяющие устанавливать автоматический переприем корреспонденции оконечных станций и работу переприемного пункта с оконечными.

4) Буквопечатающий телеграфный аппарат Сименса был изобретен только в 1912 г. и уже получил чрезвычайно широкое распространение во всех странах. Он также состоит из 3 частей: а) перфоратора, б) передатчика и в) приемника.

а) Перфоратор . Текст телеграммы предварительно набирается на перфораторе, которому придана форма и расположение клавиатуры обыкновенной пишущей машинки (фиг. 14).

При нажатии клавиши на ленте пробивается (пробивными электрическими магнитами) ряд отверстий, соответствующих набираемому знаку (букве или цифре). Для каждого передаваемого знака употребляются 5 импульсов тока - положительного или отрицательного направления - в 32 комбинациях, как и у аппарата Бодо. На фиг. 15 показана лента буквопечатающего телеграфного аппарата Сименса. Отверстию в бумажной ленте соответствует отрицательный импульс тока, а целому месту соответствует положительный импульс тока.

б) Передатчик (фиг. 16) приводится в действие электродвигателем (200-1000 об/мин.), причем скорость работы зависит от электрических свойств провода и объема корреспонденции (за каждый оборот передается один знак).

Вставленная в аппарат лента проходит через контактное приспособление с рычажками (наподобие игл в аппарате Уитстона), причем в момент прохождения отверстия над соответствующим рычажком в провод посылается отрицательный импульс тока; когда же над рычажком проходит не пробитое место ленты, в провод посылается положительный импульс (фиг. 17).

Эта комбинация токов производит в приемнике (фиг. 18) печатание посланного знака, причем приемник должен вращаться синхронно с передатчиком. Синхронизм устанавливается особым приспособлением вполне автоматически в течение 10-30 сек. после пуска аппарата и затем поддерживается им во все время работы.

в) Приемник . Посылаемые передатчиком импульсы тока (фиг. 17, правая часть схемы) поступают в 5 поляризованных комбинаторных реле SR, которые приводят свои якоря в то или иное положение, смотря по направлению отдельных импульсов. Ось приемника, на которую насажено типовое колесо Т, приводимое в движение электромотором А, несет на себе также и контактные щетки с , соединенные попарно и движущиеся по контактным кольцам особого диска s . Кольца разделены по некоторой системе на сегменты, соединенные через один между собой и с контактами k пяти комбинаторных реле. Если пять якорей приняли положение, соответствующее передаваемому знаку, то его печатание произойдет в момент замыкания тока от местного источника В через соответствующие сегменты, щетки, контакты реле, их якоря и печатающий электромагнит М. Этот путь тока устанавливается в тот момент, когда передаваемая буква типового колеса проходит над печатающим электромагнитом. Ясно, что при каждом обороте щеток или устанавливаются якоря пяти комбинаторных реле или отпечатывается только одна буква. Поэтому в приемнике употребляют два комплекта комбинаторных реле; один из них при каждом обороте типового колеса находится в соединении с линией и, следовательно, с передатчиком, от которого он может принять комбинацию токов и расположить соответственно ей свои якоря, другой же комплект реле, бывший до того в соединении с линией, печатает предшествующую букву. Кроме того, можно включить в приемник и перфоратор, так что, кроме телеграммы, отпечатанной буквами, получится и перфорированная лента; последняя может быть пропущена через передатчик, установленный на другом проводе, что имеет большую выгоду при работе переприемных телеграфных контор.

Для аппарата Сименса необходим местный источник тока в 110 или в 220 V и 4-5 А, что является его единственным недостатком. Манипуляции на аппарате Сименса весьма просты и не требуют от телеграфиста продолжительной выучки. Буквопечатающий телеграфный аппарат Сименса работает дуплексом, причем в случае работы на далекое расстояние для него вполне применимы обыкновенные трансляции Уитстона.

Известно, что устойчивость работы телеграфных аппаратов измеряется продолжительностью посылки элементарного сигнала.

В таблице приведены для сравнения эти данные для аппаратов Бодо, Уитстона и Сименса.

Из таблицы видно, что устойчивость работы аппарата Сименса (продолжительность посылки элементарного сигнала) выше, чем у аппаратов Бодо и Уитстона. Это обстоятельство в отношении аппарата Уитстона следует приписать преимуществам алфавита Бодо над алфавитом Морзе; в отношении же аппарата Бодо - преимуществам примененной аппаратом Сименса коррекции.

Телеграф – набор методов, позволяющих передать текстовые символы, письменность, сообщения на дальние дистанции. Предполагается знание обеими сторонами регламента обмена информацией, определённых правил расшифровки. Например, железнодорожник понимает сигналы семафора, водители – светофора. Сие простейшие примеры принципа действия телеграфа. Исторически люди применяли дым, маяки, отражённый зеркалом свет.

Термин

Слова введены французским изобретателем семафора, Клодом Шаппом (семафор, телеграф). Ныне термин привычно обозначает электрическую разновидность устройств. Беспроводная телеграфия подразумевает модуляцию несущей, противопоставляясь используемой ранее Герцом технике наблюдения искрового промежутка. Противореча Шаппу, Морзе указывал уместность применения термина, обозначая системы передающие/записывающие послания. Дым тогда следует считать семафором.

Переданное послание стали называть телеграммой. Отдельной строкой стоит Телекс, дошедший сетью.

История

Согласно терминологии Морзе, телеграф изобрёл Павел Шиллинг. Ранние модели посылали сигналы точка-тире, символы печатной машинки.

Оптический телеграф

Первый оптический телеграф построил Роберт Хук (1684 год) для Королевского общества Великобритании. Эксперименты продолжил сэр Ричард Лоуэлл Еджворт (1767 год). Семафорная сеть Шаппа 1793 года проработала полвека. Немало популярности изобретения поспособствовала Французская революция, требуя сократить время передачи правительственных донесений. 2 марта 1791 года, в 11 утра, отправлено первое сообщение, преодолевшее 16 км: «Продолжив, скоро будешь овеян славой».

Незамысловатая конструкция содержала наблюдательный телескоп, пару черно-белых панелей. Оператор, листая книгу кодов, выписывал буквы. Год спустя Клоду поручили проложить линию Париж-Лиль длиной 230 км. Задумка призвана упростить управление австрийской войной. В 1794 году линия принесла весть: капитулировал Конде-сюр-л`Эско. Затрачен 1 час времени.

Пруссы потрясены возможностями новой системы, построив собственные линии (1830-е годы). Работоспособность телеграфа задавалась погодными условиями, временем суток. Скорость доставки составила два-три слова ежеминутно. Последний береговой вариант похоронен Швецией (1880). Франция продолжала использование изобретения, доверив семафор морякам, желающим передать весточку берегу. Несомненны достоинства методики:

  1. Отсутствие затрат энергии, включая солнечную. Система успешно противостоит облачной погоде.
  2. Скорость даст 100% очков форы гонцам (пловцам).

Электрический телеграф

Первую идею утилизации полезных свойств электричества обнародовал журнал Скотс мэгэзин (1753 год). Энтузиасты предложили выделить каждой букве алфавита индивидуальный провод (тогда использовали шёлковые нити). Источником электричества выступил статический генератор. Ранние приёмные устройства использовали явление взаимодействия зарядов. Затея, лишённая перспектив, осталась собирать пыль архива.

Джордж-Луи ле Саг построил (1774) двадцать лет спустя согласно заметке первую электростатическую модель. 26 проводов позволяли читать буквы людям, занявшим соседние помещения.

Новый толчок развитию направления дало изобретение Вольтой электролитических источников тока. Немецкий учёный Томас фон Зёммеринг (1809) усовершенствовал конструкцию математика Франциско Сальва Кампилло. Обе вмещали 35 параллельных проводов, продолжая идею, описанную выше. Новинка шутя покрывала дистанцию пару-тройку километров.

Приёмная сторона, снабжённая электролитическими колбами, наблюдала пузырьки водорода. Номер реторты соответствовал букве, цифре. Визуальное наблюдение помогало несущему наряд оператору зафиксировать переданное пузырьками сообщение. Битрейт оставлял желать лучшего.

Годную модель построил английский изобретатель Франсис Роналдс (1816). Фамильное поместье (Хаммерсмит Молл) украсила канава протяжённостью 175 ярдов. Отрезок длиной 8 миль снаружи шёл воздушным путём. Представленное адмиралтейству изобретение оценили, как «полностью бесполезное». Письменная работа Роналдса Описание телеграфа и некоторых других электрических аппаратов считается безусловно первым манускриптом, касающимся темы. Попутно Франсис рассмотрел ретардацию сигналов, спровоцированную неизвестной тогда науке индукцией.

Питер наносит ответный удар

Русский дипломат Павел Шиллинг продемонстрировал (1832) дистанционную передачу сообщений меж соседними помещениями. Примечательным моментом стало использование шифрования символов: попытка уменьшить количество соединительных проводов. Роль приёмников сыграли 6 мультипликаторов, соединительных линий стало 8:

  1. Сигнальная.
  2. Возвратная.
  3. 6 информационных.

Постепенно изобретатель догадался буквенный код заменить цифровым. Новая редакция прибора содержала 2 медных жилы. Британское правительство (1836) пыталось выкупить патент. Изобретатель отвергает зарубежное предложение, принимая условия Николая I. Длина очередной воздвигнутой линии составила 5 километров, соединив здание адмиралтейства, царский дворец Петергофа, морскую базу Кронштадт для служебной переписки. Проект окончился смертью изобретателя.

Интересно! Ранее (1821) Аднрэ-Мари Ампер высказывал идею реализации телеграфа посредством поворотных рамок, управляющих гальванометром Швейггера. По словам учёного, он экспериментально проверял собственные идеи. Питер Барлоу (1824) повторил шаги, проделанные Ампером, сочтя достигнутую максимальную дистанцию 200 метров неперспективной.

Карл Фридрих Гаусс и Вильгельм Вебер создали (1833, Гёттинген) первый электромагнитный телеграф, объединивший обсерваторию и Институт физики, разделённые пространством протяжённостью 1 км. Шиллинг применял поворотные рамки, наподобие конструкции Швейггера. Немецкие учёные задействовали настоящее электромагнитное реле, образованное катушкой проволоки. Элементами кода стали положительное, отрицательное направления течения тока. Постепенно передачу информации стали кодировать импульсами, повысив скорость. Спонсированные Александром фон Гумбольдтом учёные продолжили работу, первая рабочая модель обустроена Карлом Августом Штайнелем (Мюнхен – 1835-1836 г.г., затем – первая немецкая железная дорога).

Коммерческий успех

Американцы вели разработки параллельно. Некоторые упрекают Дэвида Альтера в плагиате. Доктор ответил репортёру: «Затрудняюсь заметить связь меж изобретением Морзе и телеграфной связью Элдертона. Профессор также вероятно ничего не слышал про местные средства передачи сообщений».

Самюэль Морзе запатентовал (1837) пишущий электрический телеграф. Помощник инженера, Альфред Вэйл разработал регистратор: стилус, управляемый магнитом. Совместно искатели сгенерировали новый код. 11 января 1838 года Морзе выслал сообщение, преодолевшее 3 км провода.

Это интересно! Интернет полон заблуждений, будто первой пташкой стала библейская фраза WHAT HATH GOD WROUGHT? Указанное послание датируется 1844 годом. Тогда длина телеграфной сети составила 44 км.

Май 1837 года подарил планете первый платный сервис отправки сообщений. Вильям Фотергиль Кук и Чарльз Витстон запатентовали шестипроводной игольчатый телеграф. Система могла включать произвольное количество заострённых стальных стержней. Изобретатели рекомендовали использовать 5 штук. Четырёхигольная модель соединила два района Лондона. 25 июля 1837 года прошла успешная демонстрация. Гаусс пробивался спонсированными деньгами – Кук и Витстон заработали, продав запатентованные модели.

Заложенный подземный кабель вскорости приказал долго жить: пробой изоляции. Изделие заменили единственной жилой, лишённой покрытия. Прибор модернизировали. После сокращения осталось 2 иглы, длина кода возросла. Следующая инсталляция (Слау, 1843 год) содержала двухпроводной кабель, обходясь единственным острием. Первый коммерческий успех привлёк внимание энтузиастов, обеспечив отрасль стабильным приростом инноваций.

Азбука Морзе

CША новый код завоёвывал 20 лет, 24 октября 1861 года прикончив Пони Экспресс путём сквозного пересечения континента линией. Вскорости каждый почтовый офис обзавёлся экземпляром новой системы оказания услуг. Коммерсанты видели широкий круг задач:

  1. Повысить скорость передачи.
  2. Снизить стоимость.
  3. Уменьшить объем ручного труда.

Уволить телеграфисток помог метод АВС Витстона (1840). Изобретатель расположил буквы вокруг циферблата часов. Приёмная игла выбирала нужную. Клиенту-получателю оставалось записать результат. Скорость достигла лимита 15 слов/мин.

Новые свершения

Александр Бейн запатентовал (Эдинбург, 1846) химический телеграф. Ток двигал стальной стилус по бумаге, пропитанной смесью нитрата аммония и ферроцианида калия. Полученные голубые маркеры повторяли переданный код Морзе. Максимальная скорость составила 1000 слов/мин. Послание расшифровывал оператор. Новинке пришёл конец: разъярённая группа Морзе отсудила патент.

Параллельно Роял Эрл Хаус разработал печатную систему, содержащую клавиатуру. Приёмная сторона автоматически формировала бумажное сообщение. Заявленная скорость составила 2600 слов/час. Существовала паровая версия 1852 года.

Идею подхватил Дэвид Эдвард Хагис. Клавиатура, содержащая 26 символов, завоевала всеобщее признание. Техника отличалась завидной аккуратностью. Следующая новинка заставила подождать, выявив всеобщее удовлетворение существующим положением дел. Эмиль Бодо (1874) внедрил собственную кодировку. Символ передавался положением пяти переключателей. Скорость составила 30 слов/мин.

Окончательно автоматизировал процесс Чарльз Витстон, изобретя перфоленту. Устройство, бесхитростно названное Стик Панч, напоминало печатную машинку. Оператор садился, набивал послание, вправлял ленту, передавал приёмной стороне. Скорость достигла уровня 70 слов/мин.

Принтеры-телексы

Печатные устройства запоздали. Первой удачной версией считают изобретение Фредерика Крида (1924). Инженер выпустил ряд инновационных механизмов, включая перфоратор ленты. Движителем выступил сжатый воздух. Автоматизированная система кропала 200 слов ежеминутно, составив конкуренцию химической модели XIX века. Работник компании Крида, Дональд Мюррей, модифицировал код Бодо, взяв соответствующий патент. Вскорости модель P3 (1927) завоевала почтовые отделения. Система заинтересовала издание Дэйли Мэйл, вышел адаптированный вариант перфоратора.

Усовершенствованные системы компании Телетайп захватили аэропорты, разнося служебные сообщения, прогнозы погоды. К 1938 году сеть охватила США полностью, исключая штаты Мэн, Южная Дакота, Нью-Хэмпшир. Крид оккупировал Британию, Сименс – Германию. Адресат выбирался согласно стандартному телефонному номеру (импульсный набор). Новый класс устройств назвали телексами.

Посредством мультиплексирования одна линия вмещала максимум 25 машин. Телекс стал надёжным средством дальней связи.

Атлантический кабель

Идея соединить материки родилась параллельно изобретениям Генри, Витстона. Родоначальником считают Морзе (1840). Учёные искали подходящий изолятор, способный защитить медную жилу. Шотландский хирург Вильям Монтгомери предложил (1842) гуттаперчу – липучий сок малазийского растения. Фарадей и Витстон немедля подтвердили изоляционные качества материала. Было решено выполнить прокладку линии Дувр-Кале. Тестирование (1849) прошло успешно на базе реки Рейн.

Первые шаги: зарождение идеи

Джон Ваткинс Бретт получил одобрение Луи-Филиппа проложить линию, объединяющую Англию и Францию. Работы окончились к 1850 году. Трассу довели до Ирландии. Параллельно епископ Джон Маллок, глава Романской католический церкви Ньюфаундленда провел линию лесом, снабдив епархию связью. Следующий проект последователей Христа пересек залив святого Лаврентия. Потуги священника вдохновили Фредерика Ньютона Гисборна. Изобретатель получил (1851) гранд легитимной власти острова, сформировав компанию, высказал идею Цирусу Весту Филду. Так родилась идея покорения Атлантики.

Выработка методики укладки

В 40-е годы XIX века отдельные энтузиасты лелеяли надежду соединить берега Америки, Европы медной жилой. Среди прочего, Эдвард Торнтон, Алонцо Джэкман. Цирус взял консультацию у Морзе. Затем заинтересовал лейтенанта Мэттью Мори, сведущего в океанографии. После Филд оповестил компании Ньюфаундленда, США, Великобритании, предложив организовать океанический телеграф.

Следующий проект (1854) преследовал смелую мысль – покорить Атлантику. Затейники быстро осознали нехватку финансирования. Потребовалось организовать общество, собирающее средства. Первым шагом стала попытка (1855) покорить залив святого Лаврентия. Барк исправно клал кабель, помешал шторм: пришлось срочно резать, спасая жизни людей. Следующим летом пароход успешно завершил задуманное. Филд, назначив главным инженером Чарльза Тильстона Брайта, решился.

Трансатлантическая компания

6 ноября 1856 года предприниматели создали Атлантическую телеграфную компанию (Лондон), занимавшуюся конструированием подводной магистрали, призванной приблизить столь дальние берега США хотя бы с точки зрения скорости передачи новостей. Попытка 1858 года увенчалась успехом. Линию сломали лица, передававшие сообщения.

Километр кабеля, образованного семью медными жилами, весил 26 кг. Покрытый тремя слоями гуттаперчи – почти втрое тяжелее. Изолятор извне защищал конопляный чулок (пенька), броней послужила тесная спираль 18 витых стальных жил. Итоговый вес составил 550 кг/км. Производством занялись две мануфактуры:

  1. Гласс, Эллиот и Ко (Гринвич).
  2. Р.С. Ньювал и Ко (Биркенхэд).

Позже вскрылось: отдельные секции намотаны в противоположных направлениях. Указанное отступление от технологии намеренно преувеличивалось перед общественностью после поломки кабеля, вызванной превышением допустимого электрического напряжения. Правительство Англии выделило 1400 фунтов стерлингов, предоставив корабль. Следующий (после первой неудачи) сбор средств длился 8 лет. 28 июля 1866 года сервис заработал. Общая хронология:


Это интересно! Электрическое разрушение первого удачно проложенного кабеля произвёл Вилдман Вайтхаус. Учёный муж попробовал значительно поднять напряжение, полагая повысить скорость. Публике объявили: виноваты производитель, склады, третьи лица.

Личное мнение перевесило интеллект

Потуги инженеров привлекли внимание учёных, возжелавших исследовать проблемы передачи сигнала вдоль длинных линий. Проще говоря, мужей науки попросту заставили дать ответ. Проблема усугублялась разногласиями 2 главных инженеров, разделённых океаном, на предмет того, как должен работать кабель:

  1. Лорд Кельвин, ухвативший западный конец, считал недопустимым повышать напряжение. Вместо этого предлагалась импульсная передача с детектированием по переднему фронту вытекающего тока. Дифференциальный гальванометр-регистратор Кельвин изобрёл ранее.
  2. Занимавший восточный конец Вайтхаус имел медицинское образование. Знания электричества оставляли желать лучшего. Медик, буквально истолковав закон Ома, внимая совету Кельвина, решил повысить напряжение. Подручные быстро достали индукционную катушку, обеспечивающую разницу потенциалов несколько тысяч вольт. Изоляция морской нити терпела пытку несколько дней, затем система окончательно доломалась. Негативная реакция общественности заморозила дальнейшие работы на 7 лет.

Great Eastern

Проект 1865 года осуществляло судно Great Eastern. Три танка вместили 4300 км кабеля, палубу оборудовали специальной оснасткой. Утром 15 июля 1865 года корабль покинул бухту острова Валентиа. 31 числа пройдено 1968 км, моряки потеряли конец… Пароход затрубил к Англии, Филд организовал новое предприятие – Англо-Американскую телеграфную компанию. Собрав деньги, Великий Восток отчалил 13 июля 1866 года. Презрев капризы погоды, 27 числа команда успешно достигла противоположного берега. Следующим утром (9:00) английское сообщение цитировали передовицы Таймс.

Поделиться